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This work investigates singularities occurring at finite real times in the classical dynamics of one-
dimensional double-well systems with complex initial conditions. The objective is to understand the relation-
ship between these singularities and the behavior of the systems for real initial conditions. An analytical
treatment establishes that the dynamics of a quartic double well system possesses a doubly infinite sequence of
singularities. These are associated with initial conditions that converge to those for the real separatrix as the
singularity time becomes infinite. This confluence of singularities is shown to lead to the unstable behavior that
characterizes the real motion at the separatrix. Numerical calculations confirm the existence of a large number
of singularities converging to the separatrix for this and two additional double-well systems. The approach of
singularities to the real axis is of particular interest since such behavior has been related to the formation of
chaos in nonintegrable systems. The properties of the singular trajectories which cause this convergence to the
separatrix are identified. The hyperbolic fixed point corresponding to the potential energy maximum, respon-
sible for the characteristic motion at a separatrix, also plays a critical role in the formation of the complex
singularities by delaying trajectories and then deflecting them into asymptotic regions of space from where they
are directly repelled to infinity in a finite time.
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I. INTRODUCTION

In this paper we investigate singularities that occur in the
classical dynamics of one-dimensional systems at finite real
times for complex initial conditions. Our goal is to examine
the relationship of such singularities to phenomena observed
in ordinary real dynamics. In particular, we explore the con-
nection between such singularities and the unstable behavior
that characterizes the purely real motion of double-well sys-
tems near separatrices. The results may have implications for
the understanding of chaos formation in nonlinear systems.

We refer to the real-time behavior of a classical system
with complex initial conditions as complex dynamics �CD�.
This form of dynamics is directly important for various semi-
classical treatments of time evolution. For example, con-
struction of the semiclassical Van Vleck propagator in the
ordinary coordinate representation �1,2� requires identifica-
tion of classical “root” trajectories that travel between two
specified positions in a given time. Complex dynamics be-
comes relevant for classically forbidden processes �e.g., tun-
neling� since the root trajectories must then have complex
initial momenta �3–6�. The time-dependent semiclassical
treatment of tunneling �7,8� in the so-called initial value rep-
resentation �9–11� also requires an analysis of CD, since the
integrand in this treatment must be designed to allow defor-
mation of the integration paths to steepest descent contours
passing through points that are initial conditions for the same
complex root trajectories arising in the Van Vleck approach
�7�. Semiclassical propagation in the coherent state represen-
tation �12–21� again requires identification of certain root
trajectories, but these now involve complex initial conditions
for almost all pairs of initial and final states, even for the
case of free particle motion �12�. As a result, such a treat-
ment relies on CD even more heavily than the former ap-
proaches.

Previous studies of CD in one-dimensional systems have
revealed that, for particular choices of initial conditions, the

dynamical variables may become infinite at a finite time,
even for Hamiltonians that are analytic for real values of the
coordinate and momentum �14,15,22�. When one of the ini-
tial variables is held fixed, singularities plotted as functions
of the real and imaginary parts of the remaining complex
initial variable are found to lie along certain continuous 1D
curves �14,15� which we call “singularity curves.” As the
initial conditions vary along such a curve, the time t* at
which the trajectory diverges varies continuously and mono-
tonically. When initial conditions cross such a curve at a
point associated with a particular value for t*, the dynamics
for t� t* changes discontinuously.

Such singularity curves are important for semiclassical
theory. In the coherent state representation, the different dy-
namics obtained upon crossing these curves can yield sepa-
rate root trajectories that contribute to the semiclassical
propagator �14,15�. In the ordinary coordinate representation,
determination of root trajectories that describe tunneling may
require analytic continuation of the dynamics across the sin-
gularity curves which serve as branch cuts �7�.

Semiclassical investigations of chaotic tunneling
�18,23–26� have focused attention on CD singularities for
nonintegrable systems. Such singularities are implicated in
the formation of characteristic interference patterns in the
scattering probability �18,24–26� and play a role in the de-
termination of the nonlinear resonance interactions associ-
ated with tunneling �23�.

The singularities of interest here are related to those oc-
curring in real time for the dynamics of complex Hamil-
tonian systems �27,28� and, especially, to those occurring for
complex time in real Hamiltonian systems �29–35�. Singu-
larities of the latter kind arise in semiclassical treatments of
time-independent properties for systems undergoing tunnel-
ing �29� and time-dependent properties for nonautonomous
systems �24–26�. They have also been the subject of great
interest due to their relevance for the issue of the integrabil-
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ity of classical systems, as implied by the Painlevé-
Kowaleskaya conjecture �30–35�.

Beyond semiclassical applications and the subject of
Painlevé integrability, the present work is motivated by a
suspected role of the singularities in the formation of chaos.
A connection between complex singularities and real chaotic
behavior was established a number of years ago by Greene
and Percival �36� for the cases of the standard and semistan-
dard maps. These authors showed that the singularities form
“natural boundaries” defining a zone of analyticity about a
real torus in complex phase space. For appropriate choices of
system parameters, the singularities approach the real axis,
the zone shrinks, and global real chaos ensues. Greene and
Percival attributed this result to the breakdown of the analy-
ticity requirements �37� for the persistence of KAM tori in
perturbed integrable systems. They further conjectured that a
similar relationship between the complex singularities and
the onset of real chaos should hold for general nonintegrable
Hamiltonian systems.

A more common approach to the understanding the for-
mation of chaos relates the onset of this phenomenon to the
properties of hyperbolic fixed points �HFPs� and the broken
separatrices that emanate from them. Thus, the unstable na-
ture of chaotic motion can be attributed to the instability of
the dynamics along the separatrix �e.g., as expressed by the
whisker map �38��, the homoclinic entanglement of the
stable and unstable manifolds of the HFPs �39,40� and the
nature of the separatrix as an accumulation point for nonlin-
ear resonances �38�. The central importance of the separatrix
for the chaos that may be formed when an integrable system
is perturbed raises the question of how separatrix motion
continues in the complex plane. Viewed from the opposite
direction, one is led to ask, “What specific form of complex
behavior correlates to motion along the separatrix as the ini-
tial conditions become real?” Since the real separatrix mo-
tion becomes singular at infinite time, one may suspect that it
is related to singular trajectories in the complex plane, i.e.,
that real separatrices are formed by the approach of CD sin-
gularities to the real plane. A clarification of this matter
might establish a link between the Greene-Percival treatment
of chaos formation and the properties of the HFPs.

However, quite apart from the issues described above, a
principal factor motivating the present studies is that com-
plex dynamics is a direct generalization of ordinary, real,
classical motion. It is, thus, a worthy subject for investiga-
tion on fundamental grounds. The singularities that arise in
CD are prominent, apparently ubiquitous, phenomena for
nonlinear systems. Such divergences affect not only the be-
havior of singular trajectories but, in certain cases, qualita-
tively dominate the nature of almost all trajectories of the
system �see Sec. III below�. It is, therefore, surprising that
little systematic work has been directed towards exploring
the phenomenology of CD singularities, even for the sim-
plest systems. In particular, the possible relationship of these
singularities to unstable, real motion has not received due
attention in previous work. Here we take some preliminary
steps to remedy this situation by examining the complex dy-
namics of simple, one-dimensional, systems having potential
energy barriers, particularly, double-well systems. The ordi-
nary, real-valued, motion of such systems is characterized by

separatrices associated with unstable but �in the absence of
nonintegrable perturbations� nonchaotic behavior. For the
systems treated, we show analytically and numerically that
singular trajectories form the extension of the real separatrix
in complex phase space, i.e., that complex singularities ac-
cumulate to the real separatrix as the singularity time be-
comes infinite. Our analysis reveals the role of the hyper-
bolic fixed point in the formation of the complex
singularities and, for particular systems, the relationship be-
tween the instability of the singular trajectories and the in-
stability of the real separatrix motion. Questions regarding
the degree to which these conclusions remain valid for non-
integrable systems, and the possible mechanistic role of the
singularities in the formation of real chaos, are relegated to a
separate study.

In Sec. II we present an analytical investigation of the
complex singular motion in a quartic double well system,
which establishes the relationship of the CD singularities to
the real separatrix for this case. In Sec. III we study the
complex dynamics of this system numerically to obtain a
physical picture of the singular dynamics and to allow com-
parison with the behavior of more general systems for which
analytical treatments are unfeasible. In Sec. IV, we numeri-
cally investigate the singular motion of two additional
double-well systems, and verify that the behavior is qualita-
tively similar to that of the quartic case. We, further, identify
the properties of the singular trajectories that are responsible
for the apparently generality of this behavior for one-
dimensional systems having potential barriers. Finally, in
Sec. V, we summarize and discuss our findings.

II. ANALYTICAL TREATMENT OF THE QUARTIC
DOUBLE WELL

We wish to investigate the dynamics of the double well
system defined by the Hamiltonian

H =
p2

2
+ V�q� , �1�

where the potential energy function is given by

V�q� = q4 − 2q2. �2�

For real values of the coordinate q the potential energy func-
tion has minima at q= ±1, where V=−1, and a barrier maxi-
mum at q=0, where V=0. The separatrix for this system thus
lies at energy E=0.

The equations of motion for this system can be solved
analytically. Given the real energy E and real initial position
q0�q�0�, the position at real time t is given by �40�

q�t� = q+dn��2q+�t − ��,k� , �3�

where dn is the Jacobi elliptic function �41�. In this expres-
sion, k is defined as

k = �1 − q−
2/q+

2�1/2 �4�

and
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q± = �1 ± �1 + E�1/2�1/2 �5�

are the turning points for motion at energy E �i.e., the posi-
tions where p=0�. � is defined by

� =
1

�2q+

F��,k� �6�

and can be regarded as the time needed for the particle to go
from q0 to q+. Here,

� = sin−1� q+
2 − q0

2

q+
2 − q−

2�1/2

�7�

and

F��,k� = 	
0

� d�

�1 − k2 sin2 ��1/2 �8�

is the elliptic integral of the first kind �41�.
These expressions, which describe the ordinary

real-valued classical motion of the system, can be analyti-
cally continued to complex values of the initial momentum
p= px+ ipy, initial coordinate q=x+ iy, and time t, in which
cases E, k, q±, �, and � generally become complex. The
singularities in the resulting motion then follow from the
known properties of the function dnu. Equation �8.147.3� of
Ref. �41� can be used to show that

q�t� = 

m=−�

�



n=0

�

qmn�t� , �9�

where

qmn�t� =
2q+�− 1�n�2n + 1�K�

��2q+�t − �� − 2mK�2 + ��2n + 1�K��2
, �10�

and where

K = 	
0

�/2 d�

�1 − k2 sin2 ��1/2 �11�

and

K� = 	
0

�/2 d�

�1 − �1 − k2�sin2 ��1/2 �12�

are complete elliptic integrals of the first kind �41�. Equa-
tions �9� and �10� show that q�t� has simple poles at times

t* � � + �2q+
2�−1/2�2mK − �2n + 1�iK�� �13�

for all positive and negative integers m ,n—a result that can
also be deduced directly from the known properties of dn
�41�. Differentiation of Eqs. �9� and �10� with respect to time
further establishes that p�t�= q̇�t� has second-order poles at
such singularity times.

The values of q±, K, and K�, depend on E while the value
of � depends both on E and q0. For real initial conditions,
each of these quantities is real and the singularity times t* are
complex. Such times are of interest in Painlevé analysis
�30–35�. For complex initial conditions, however, the above
quantities generally become complex, thus allowing t* to be-

come real. Such real values signify singularities that
occur during the real-time evolution of the system and are of
direct importance for this work. The complex initial condi-
tions which produce singularities of this kind must satisfy
Im t*=0 or

Im�� + �2q+
2�−1/2�2mK − �2n + 1�iK��� = 0 �14�

for integer �m ,n�. For each pair �m ,n�, the solutions of this
equation form a three-dimensional surface in the R4 phase
space of initial conditions �p0 ,q0�= �p0x , p0y ,x0 ,y0�, where
p0= p0x+ ip0y � p�0� and q0=x0+ iy0 �22�. Thus, if q0 is fixed,
the values of p0 leading to singularities should form an infi-
nite set of 1D curves in �p0x , p0y� space. These are the sin-
gularity curves discussed in the Introduction.

We wish to determine the properties of these curves
for the special case of real q0 and complex p0 with p0x�0,
p0y 	0, consistent with the conditions chosen for the numeri-
cal investigations of Sec. III. It is convenient to express Eqs.
�13� and �14� in terms of the combinations of complete el-
liptic integrals that become real in the limit as p0y→0 for
p0x� ps

+��2�2q0
2−q0

4��1/2, corresponding to Im E→0 for
Re E�0. An analysis similar to that of Ref. �42� shows the
appropriate combinations to be K− iK� and K�. Thus Eq. �13�
becomes

t* = � + �2q+
2�−1/2�2m�K − iK�� + �2j − 1�iK�� , �15�

where j=m−n. Defining

�2q+
2�−1/2�K − iK�� = 
 − i� , �16�

�2q+
2�−1/2K� = � − i , �17�

� = �r + i�i, �18�

where 
, �, �, , �r, and �i are real, Eqs. �13� can be ex-
pressed as

t* = �r + 2m
 + �2j − 1� , �19�

while Eq. �14� becomes

�i − 2m� + �2j − 1�� = 0 �20�

or, equivalently,

2j − 1

2m
=

2m − 2n − 1

2m
=

�

�
−

�i

2m�
. �21�

In the Appendix , it is shown that the quantities defined in
Eqs. �16�–�18� obey the inequalities 
 ,� ,� ,	0,
1	� /�	0, and −���i��. For t*�0, these conditions re-
strict the values of m and j, for which Eqs. �19� and �21� can
be satisfied, to the range m	1 and 1� j�m �corresponding
to 0�n�m−1�. Since � /� and �i /� are continuous func-
tions of p0 in the range considered, Eq. �21� is satisfied by an
infinite set of values �j ,m� in the neighborhood of any p0 in
the quadrant p0x , p0y �0. Because this equation determines
the positions of the singularity curves, these curves are dense
in this region of the complex p0 plane.

For p0x� ps
+, � /�→0 as p0y→0 �since both K− iK� and

K� become real in that limit�, while � /�→1 as p0y→� �see
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the Appendix �. Numerical investigations further verify that
� /� increases monotonically with p0y for this range of p0x. If
the term involving �i / �2m�� in Eq. �21� can be neglected,
this monotonic behavior allows us to estimate the relative
ordering of the singularity curves. Thus, for constant
p0x� ps

+, we expect the values of p0y characterizing these
curves to decrease as m increases for fixed j and to increase
as m increases for fixed n.

For the case p0x�0 and p0y �0, an analogous treatment
can be carried out in terms of the combination of elliptic
integrals K+ iK� �42� and K�. It can then be shown that
the allowed values of m, j, and n for t*�0 are m	1,
m+1� j�2m, and −m�n�−1. For each singularity �m ,n�
at momentum p0 in the upper-half plane, there is a corre-
sponding singularity �m ,−n−1� at the complex conjugate
momentum p0

* in the lower-half plane.
We now show that all singularity curves converge at

t*→� to the point on the �p0x , p0y�-plane corresponding to
the separatrix �E=0�. For small E, Eq. �5� implies that

q+
2 = 2 + O�E� , �22�

q−
2 = �− E/2� + O�E2� , �23�

while the properties of the complete elliptic integrals imply
that �41�

K = ln 8 − �1/2�ln�− E� + O�E� , �24�

K� = �/2 + O�E� . �25�

Substituting Eqs. �22�–�25� in Eq. �15� and solving for E thus
yields

E � 64e−2�t*−��/mei��2j−1�/2m, �26�

where, again, j=m−n. This result expresses the energy at
which the �m ,n� singularity occurs as a function of the sin-
gularity time t*, and shows that the singularity condition is
asymptotically satisfied for all �m ,n� at E=0 as t*→�.

If the initial position q0 is fixed, the values of the initial
momentum p0 corresponding to the separatrix are given by
ps

±= ± �2�2q0
2−q0

4��1/2. Choosing p0= ps
±+�p, where �p is a

small complex increment, gives E� ps
±�p, so that Eq. �26�

yields

�p � �64/ps
±�e−2�t*−��/mei��2j−1�/2m �27�

for the values of the initial momenta causing singularities.
This establishes that, as t*→�, all singularity curves �plotted
as p0y vs p0x� converge to the points ps

±, which are on the real
axis for real values of q0 in the range −�2�q0��2. Since
Im �→0 as Im E→0, the curves approach ps

± at 2m distinct
angles

� jm = ��2j − 1

2m
� �28�

for each m, where j takes on values 1 ,2 , . . . ,2m.
We note that an entirely similar treatment can be applied

to analyze singularity curves in the space of complex initial
positions. Thus, if the initial momentum is held fixed at a

real value in the range −�2� p0��2, Eq. �26� shows that the
coordinate values associated with singularities obey

�q � �64/V��qs��e−2�t*−��/mei��2j−1�/2m, �29�

where �q=q0−qs, qs is one of the four real values for q
corresponding to the separatrix �p0

2 /2+V�qs�=0�, and
V�=dV /dq. This establishes that all singularity curves, plot-
ted as y0 vs x0, approach one of the separatrix positions qs on
the x0 axis as t*→�.

We wish to establish the relationship between the limiting
CD singularities, obtained as t*→�, and the ordinary real
dynamics of the system at the separatrix. To investigate this
issue, we write Eq. �9� as

q�t� = 

m−�

�

qm�t� , �30�

where

qm�t� � 

n=0

�

qmn�t� . �31�

Using the identity

sech z = 2�

k=0

�
�− 1�k�k + 1/2�

z2 + ��k + 1/2���2 �32�

�which can be obtained from the partial fraction expression
for cscz �43�� and Eq. �10�, we obtain

qm�t� =
�q+

2K�
sech� �

2K�
��2q+�t − �� − 2mK�� . �33�

Applying Eqs. �22�–�25� for small E now yields the simple
result

qm�t� � 2q+
�− EWmt�m

E2m + Wmt
2m , �34�

where

Wmt � 64e−2�t−��/m. �35�

This shows that qm has 2m distinct poles at complex energies
E=Wmte

i��2j−1�/2m, j=1,2 , . . . ,2m, in agreement with Eq.
�26�. These are the only singularities in qm.

This result establishes that, for fixed t, q�t� is an analytic
function of E for all real E. Furthermore, although all singu-
larities of q�t� converge to E=0 as t→ � �Wmt→0�, q�t�
remains an analytic function of energy at E=0 in that limit.
One way of viewing this is to write Eq. �34� as

qm�t� � 2��− 1�mq+Em��Em� , �36�

where ��Em���−1Wmt
m / �E2m+Wmt

2m�. As Wmt→0, ��Em� ap-
proaches the Dirac delta function ��Em� so that ��Em� van-
ishes for all E�0. The remaining singularity at E=0 is re-
moved by the factor Em which causes limt→�qm�t�=0 for all
E �consistent with the property x��x�=0�.

Despite this cancellation of divergence, the CD singulari-
ties lead to a certain residual form of singular behavior for
the real separatrix motion. This is suggested by the rapid
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variation of qm as a function of real E near E=0 for small
Wmt. This variation is due to the opposing effects of two
factors in Eq. �36�: Em, which vanishes at E=0, and �, which
becomes large near E=0 for small Wmt, reflecting the con-
fluence of the 2m CD singularities to the separatrix. As a
result, qm varies as a function of energy between the ex-
treme values of 0 for E=0 and q+ for E= ±Wmt, and these
changes occur over a decreasingly small energy range as
Wmt→0.

To explore this matter in more detail, we examine the
derivative

�qm�t�
�E

= 2mq+Wmt

�− EWmt�m−1�E2m − Wmt
2m�

�E2m + Wmt
2m�2 �37�

for m	1. Although, for fixed t, this function is analytic on
the real E axis, singular behavior emerges when we let
Wmt=�E where � is a real constant. This is equivalent to
choosing the time t such that the particle is in the vicinity of
one of the outer turning points ±q+ �i.e., not too near q=0�,
regardless of the energy. Then we find that

�qm�t�
�E

=
1

E

mq+�− ��m��2m − 1�
��2m + 1�2 , �38�

which has a pole at E→0 for �  �1. Since only a single
term effectively contributes to Eq. �30� for q�t� in this limit,
the above pole also dominates �q�t� /�E.

The singularity appearing in Eq. �38� reflects the instabil-
ity of the real motion at the separatrix, associated with the
sudden change in the long-time behavior of the trajectory as
the energy passes through 0. Although the mathematical na-
ture of this singularity is different than that of the CD singu-
larities, it originates from the confluence of the CD singulari-
ties at the separatrix at infinite time. It is a residual form of
singular CD behavior that survives after the divergence is
removed. This establishes the relationship between the com-
plex singularities and the real dynamics at the separatrix for
the present system.

III. NUMERICAL TREATMENT OF THE QUARTIC
DOUBLE WELL

In this section we describe numerical calculations that al-
low us to examine the CD singularities for the above system
and to investigate the trajectories associated with these phe-
nomena. The objective is to clarify the physical origin of the
analytical results and to express the singular behavior in a
form that allows comparison to results for other systems,
where analytical results are not available.

Figure 1 shows a few singularity curves obtained by nu-
merically integrating Hamilton’s equations of motion for this
system. The curves describe complex values of the initial
momentum �p0x , p0y� that yield singularities for the fixed,
real, initial value q0=0.5 of the coordinate, describing the
particle in the right well at t=0. Only curves in the quadrant
p0x�0, p0y �0 are displayed here but a mirror image of this

FIG. 2. Singular trajectories
projected on the �x , px� plane
�subfigure �a�� and the �x ,y� plane
�subfigure �b�� for three different
points along curve d in Fig. 1.
The values of �p0x , p0y� for the
three trajectories shown are solid
curve: �2.00,1.101�, dashed curve:
�1.30,0.531�, dotted curve:
�0.950,0.0920�.

FIG. 1. Some singularity curves for the quartic double-well sys-
tem. The point marked by a dot on the real axis corresponds to the
separatrix momentum ps

+.
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set exists for p0y �0. Additional sets of curves also appear
for p0x�0. However, since q0�0 in the present calculations,
these are only similar to, but not precisely, mirror images of
the curves for p0x�0.

To generate these results, Hamilton’s equations of motion,
together with the differential equations for the monodromy
elements �p�t� /�p0 and �q�t� /�p0, were integrated using a
fixed time-step Runge-Kutta algorithm. Singularities were
assumed to occur when �p�t� /�p0 attained a large value
�although we could have used large values for p�t� or q�t�
as singularity criteria�. The search for singularity curves was
carried out by examining the dynamics for finely spaced in-
tervals along p0y and specified values of p0x �22�.

The results shown in Fig. 1 are qualitatively consistent
with the conclusions of Sec. II. Although only six singularity
curves are displayed, many more are actually observed. As
discussed below, such curves indeed seem to form an infinite
sequence, as suggested by the analytical results. All curves
appear to converge to the point ps

+= �2�2q0
2−q0

4��1/2�0.9354
on the real axis, corresponding to the momentum at the sepa-
ratrix. Along a given curve, the time t* at which the singu-
larity occurs is found to increase as p0y decreases, consistent
with t*→� as p0→ps

+, as suggested by Eq. �27�. In addition,
the various curves are seen to approach ps

+ at specific angles
�also see Fig. 6 below�, suggesting that each curve is associ-
ated with a particular pair of integers �m ,n� or �m , j�, con-
sistent with Eq. �28�.

The physical meaning of these results can be made clearer
by examining the singular trajectories associated with the
various curves. A few such trajectories are projected on the
�x , px� and �x ,y� planes in Figs. 2–4. The divergence of the
trajectories is more directly evident in plots of y vs x than in
those of px vs x since y�t�→ ±�, but x�t�→0 and px�t�→0 at
the singularities.

The plots of px�t� vs. x�t� are reminiscent of the well-
known phase portraits for the real motion of the system �40�.
However, whereas the real trajectories either remain in a spe-
cific potential well for all time �E�0� or alternate between
the two wells for all time �E�0�, the present complex tra-
jectories generally have an intermediate nature. They remain
in a particular well for a certain number of cycles and then
move to the other well. Thus, a CD trajectory can be char-
acterized by its sequence of the cycles in the two wells. This
allows one to conveniently represent a singular trajectory by
a finite code of the form rk1lk2rk3

¯ where, e.g., rk1 denotes k1
cycles in the right well and lk2 represents k2 cycles in the left
well. Figures 2–4 show that all trajectories associated with a
particular singularity curve have the same code while trajec-
tories associated with different singularity curves have dif-
ferent codes. For example, the codes for the trajectories plot-
ted in Figs. 2–4, associated with curves d, f , and c in Fig. 1,
are r ,rl, and r2l, respectively. Table I presents the codes for
the remaining curves in Fig. 1.

A detailed examination of the arrangement of the singu-
larity curves in the �p0x , p0y� plane reveals the following pat-

FIG. 3. Singular trajectories
projected on the �x , px� plane
�subfigure �a�� and the �x ,y� plane
�subfigure �b�� for three different
points along curve f in Fig. 1. The
values of �p0x , p0y� for the three
trajectories shown are solid curve:
�4.00,1.364�, dashed curve:
�2.00,0.531�, dotted curve:
�0.970,0.0314�.

FIG. 4. Singular trajectories
projected on the �x , px� plane
�subfigure �a�� and the �x ,y� plane
�subfigure �b�� for two different
points along curve c in Fig. 1. The
values of �p0x , p0y� for the trajec-
tories shown are solid curve:
�4.00,3.552�, dashed curve:
�2.00,1.393�.
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tern. For fixed p0x� ps
+, curves belonging to the sequence rk,

k=1,2 , . . ., are located at values of p0y that increase with k.
Beneath curve rk1 �and above rk1−1 for k1�1� are curves
rk1lk2 at values of p0y that increase with k2. Beneath rk1lk2

�and above rk1lk2−1 for k2�1� are curves rk1lk2rk3at values of
p0y that increase with k3. This pattern appears to repeat on
ever finer scales ad infinitum. Although singularity curves
consistent with all values of k1 ,k2 , . . ., do not exist �see be-
low�, the curves seem to form a dense set, so that every
nonsingular trajectory can be made singular by an infinitesi-
mal adjustment of the initial conditions. The sequence of
singularity curves with codes rl ,rlrl ,rlrlrl , . . . ��rl�k con-
verges to the real axis at p0x� ps

+ as k→�, consistent with
untrapped real trajectories with energies E�0, while the se-
quence of curves with codes r, r2, r3 , . . . �rk converges to
the real axis at p� ps

+ as k→�, consistent with real trajecto-
ries with E�0 that are trapped in the right well.

The relation between this code and the integers m and n
introduced in Sec. II can be understood by expressing the
singularity time as

t* = 	
C

dq/p�q,E� = 	
C

�2�E − q4 + 2q2��−1/2dq , �39�

where the integration contour C coincides with the complex
singular trajectory in q space, extending from initial position

q0 to q�t*�= ± i�. As illustrated in Fig. 5, such a trajectory
generally winds around the four turning points ±q± a number
of times in �x ,y� space before becoming divergent. For the
initial conditions investigated here, the first turning point is
always q+ and the final turning point prior to divergence is
always ±q−. Such turning points are square-root branch cuts
in Eq. �39� and are the only singularities in the integrand.
Thus, C can be deformed to run between the q0 and q+,
between various pairs of turning points, and between the
final turning point and �i�. As a result, the integral, repre-
senting the real time t*, can be broken down into a sum of
individually complex contributions: a time for passage from
q0 toq+ �denoted by ��, complex times for passage between
specific pairs of turning points, and a time for passage be-
tween the last turning point and �i�. However, examination
of Eqs. �11� and �12� shows that, apart from �, each of these
times can be expressed in terms of the complete elliptic in-
tegrals K and iK�. For example, the times for direct passage
between q+ and q−, between q+ and −q+, and between ±q−
and �i� are, respectively, cK, 2c�K− iK��, and c�K− iK��,
where c= �2q+

2�−1/2. This allows one to express t*in a form
similar to that of Eq. �13� and leads to an identification of m
and n in terms of the code for singular trajectory �see the
caption of Fig. 5 for an example�. The outcome of this analy-
sis is that m=k1+k2+ ¯ +kn+1 is the length of the code and n
is the number of transitions in the code from r to l and l to r.

This identification allows us to relate the observed
hierarchy of singularity curves to the discussion of Sec. II.
Thus, for example, the increasing values of p0y for the
sequence of singularities r ,r2 ,r3 , . . ., corresponding to
�m ,n�= �1,0� , �2,0� , �3,0� , . . ., is consistent with the expec-
tation that p0y should increase as m increases for constant n.
The decreasing values in p0y for the sequence of singularities
r ,rl ,rlr , . . ., with �m , j�= �1,1� , �2,1� , �3,1� , . . ., is consistent
with the expectation that p0y should decrease as m increases
for constant j. Note, however, that certain details of the hi-
erarchy can be explained only by taking into account addi-
tional considerations. For example, the choice �m ,n�= �3,1�

TABLE I. The codes, values of integers m and n, and angles � jm

for the singularity curves presented in Fig. 1.

Curve Code m n � jm

a r2 2 0 3� /4

b r2l2 4 1 5� /8

c r2l 3 1 � /2

d r 1 0 � /2

e rl2r 4 2 3� /8

f rl 2 1 � /4

FIG. 5. Singular trajectory
of type r2l and turning points.
Considered as an integration path,
this trajectory can be deformed
into a segment from the initial po-
sition to q+, followed by segments
that pass through q− ,q+ ,−q+ ,−q−,
and i� in succession. The
complex passage times for these
segments are � ,cK ,cK ,2c�K
− iK�� ,cK, and c�K− iK��, respec-
tively, where c= �2q+

2�−1/2. Thus,
the singularity time t* in this case
is �+c�6K−3iK��, consistent with
m=3,n=1 in Eq. �13�.
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corresponds to two possible codes rl2 and r2l but can yield
only one singularity curve. The issue of which curve actually
appears is determined by its position relative to the curve r.
The key role of this position can be understood by recalling
that the complex motion must vary continuously with the
initial conditions for times prior to singularities. The location
of the sequence rl ,rlr ,rlrl , . . ., below r implies that all tra-
jectories lying below r �the earliest singularity� must begin
with the code rl , . . ., and similar considerations imply that all
trajectories between r and r2 must begin with the code
r2l , . . . . However, although the discussion following Eq. �21�
suggests that the �3,1� curve �for which �2j−1� /2m=1/2�
should lie between curves rl and r2, it does not establish
whether it lies below or above curve r �for which
�2j−1� /2m=1/2 also�. This determination requires knowl-
edge of the numerical values of �i /� that are neglected in the
above estimates. In practice, these values place the �3,1�
curve above r so that the singularity curve actually observed
is r2l,while the curve rl2 does not exist. We mention that the
nonunique correspondence of �m ,n� to a particular code is
the rule rather the exception. Thus, the determination of
which hierarchy members are observed and which are absent
usually requires considerations similar to those above.

The assignment of integers �m ,n� to the r-l codes also
make it possible to apply Eq. �28� to determine the values of
� jm that correspond to the various computed singularity
curves. These assignments imply that � jm should be 0 for
curve �rl�� and � for curve r�. Table I presents the values of
m, n, and the predicted � jm for the curves appearing in Fig. 1.
Figure 6 verifies that these values for � jm agree with the
observed angles for approach of the curves to ps

+.
The plots of the trajectory dynamics allow us to identify

the asymptotic mechanism for the singular behavior. Panels
�b� of Figs. 2–4 show that the divergences for the present

system always occur along a portion of the trajectory char-
acterized by y�t�→ ±� and x�t�→0. This behavior is easily
understood by examining the force F=−�V�q� /�q=Fx+ iFy

that acts on the particle as q  →�. For double-well systems,
divergence will occur if the force along a particular curve in
q space repels the particle outwards and is sufficiently strong
to cause the particle to reach infinity in a finite time. We call
a curve along which these conditions are asymptotically
obeyed a divergence channel. More specifically, the condi-
tions that should be satisfied as q  →� are

F � O�qa�, a � 1 �40�

�which implies that the force is sufficiently strong �44��,

Fy/Fx � y/x �41�

�which implies that F is directed along the channel�, and

xFx + yFy � 0 �42�

�which implies that the force along the channel is repulsive�.
For the present system one easily finds

Fx = 4x�1 + 3y2 − x2� �43�

and

Fy = 4y�1 − 3x2 + y2� . �44�

Condition �40� is clearly obeyed in all directions of space for
large q, however, conditions �41� and �42� are asymptoti-
cally obeyed only for y  →� and x→0. Thus, the diver-
gence channel lies along the positive or negative y axis.

For large q in the vicinity of these channels, the force
components behave as

Fx � 12xy2, Fy � 4y3 �45�

and the asymptotic singular motion can be determined
by solving Newton’s equations ẍ=Fx, ÿ=Fy. If the “initial
conditions” at time t1 are defined to be x=x1 ,y=y1, where
y1 /x1  �1 and x1y1

3=O�1�, the trajectory for times
t*� t	 t1 is found to be

x�t� = x1�1 − �2y1�t − t1��3,

y�t� =
y1

1 − �2y1�t − t1�
, �46�

and the singularity time is seen to be t*= t1+1/ ��2 y1  �. This
result is consistent with the divergent behavior of the motion
observed in the numerical calculations.

To understand the nature of the trajectories described by
Eqs. �46�, we may substitute these equations and their time
derivatives in Eq. �1� and examine the resulting expression
for the Hamiltonian. Such a treatment immediately reveals
that the condition H=E is satisfied asymptotically only if x1
and y1 are chosen to obey 2x1y1

3=Im E. This shows that the
above expressions for x�t� and y�t� are valid only for a very
specific choice of initial conditions, asymptotically equiva-
lent to those implied by Eq. �14�. Any deviation from these
conditions causes the trajectory to veer asymptotically to the
right or left of the y axis so that it falls off the divergence

FIG. 6. �Color online� Magnified portion of Fig. 1 near p= ps
+.

The dashed lines are rays from ps
+ at the angles � jm given in

Table I.
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channel, causing the motion to become nonsingular.
Consistent with the analysis of Sec. II, these consider-

ations imply that motion along the divergence channels is
unstable. The instability of the singular trajectories is clearly
observed in numerical calculations using the full Hamil-
tonian of Eq. �1�. As illustrated in Fig. 7, a minute change of
initial conditions from those corresponding to a singularity
curve transforms the divergent portion of a singular trajec-
tory into an additional cycle in one of the wells, followed by
further nonsingular motion. The identity of this well is dif-
ferent for initial conditions above and below the singularity
curve. Thus, the r2l singular trajectory becomes a nonsingu-
lar trajectory of type r2lr , . . ., for p0y below the singularity
curve and a nonsingular trajectory of type r2l2 , . . ., for p0y
above the singularity curve. This behavior is consistent with
previous observations �7,14,15� of sudden changes in the na-
ture of generic nonsingular trajectories as the initial condi-

tions cross a singularity curve. From the present perspective,
it is interesting to note the qualitative similarity between this
phenomenon, which occurs at finite times for complex ener-
gies, and the abrupt change in the behavior of trajectories
which occurs at infinite times at the real separatrix energy.

Although the singular trajectories occupy a zero measure
in the phase space of initial conditions, their density implies
that they qualitatively dominate the dynamics of typical non-
singular trajectories. As illustrated in Fig. 8, such nonsingu-
lar trajectories are unbounded, with dynamical variables that
can become arbitrarily large at an infinite number of times.
These correspond to values of t* for the infinite number of
singularities with initial conditions that are arbitrarily close
to those of the nonsingular trajectory. Thus, the importance
of the singularities is not limited to the singular trajectories;
they have a very strong qualitative influence on the nature of
the generic trajectories of this system.

FIG. 7. Singular trajectory of
type r2l obtained with �p0x , p0y�
= �2.00,1.393� �solid curve� and
portions of apparently nonsingular
trajectories obtained with
�p0x , p0y�= �2.00,1.390� �dashed
curve� and �p0x , p0y�
= �2.00,1.396� �dotted curve�. In
the latter two cases, the trajecto-
ries go off scale at the top of the
graph and return on the bottom af-
ter forming a partial loop on the
right or left. Although these trajec-
tories are terminated at t=5.60 to
avoid complicating the figure,
they actually continue without di-
verging for very long times.

FIG. 8. Real part of the coor-
dinate vs time for a nonsingular
trajectory with q0= �0.5,0.0� and
p0= �10.0,4.000�. The large val-
ues of x are associated with sin-
gularities for nearby initial condi-
tions, e.g., the rl singularity which
occurs at t*=1.71 for p0y =3.920,
and the rl2rlrl2rlrl2rlr singularity
which occurs at t*=11.53 for p0y

=3.987 �with the same values of
q0 and p0x in all cases�.
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Examination of �x ,y� plots of singular trajectories, such
as those in Figs. 2–4, as well as many others, reveals an
interesting, consistently observed feature: entrance to a di-
vergence channel is always found to be immediately pre-
ceded by deflection of the trajectory from the region near the
origin �45�. This deflection becomes increasingly sharp as
the initial conditions approach those of the separatrix. The
feature of the potential energy function V�q� responsible for
this behavior is the saddle at �x ,y�= �0,0� which creates a
hyperbolic fixed point �HFP� for both the real and complex
dynamics of this system. In fact, linearizing Newton’s equa-
tion near such a point yields ẍ=4x and ÿ=4y, which shows
that the resulting complex dynamics is completely analogous
to that of a real two-dimensional system with potential en-
ergy function U�x ,y�=−2�x2+y2�, describing a barrier at x
=y=0. Thus, the trajectory asymptotically approaches and
leaves the region about the barrier maximum along straight
lines in �x ,y� space emanating from that point, allowing the
asymptotic motion to be characterized by approach and de-
flection angles. Furthermore, as the energy tends to that of
the barrier �E=0�, the time that the particle remains near the
HFP diverges logarithmically �see below�. In that limit, the
deflection angle of the particle becomes infinitely sensitive to
the initial conditions so that arbitrarily small changes in these
conditions cause the deflection direction to take on any
value.

IV. NUMERICAL TREATMENT OF ADDITIONAL
SYSTEMS

For the quartic double-well system, we have shown both
analytically and numerically that the real separatrix is the
asymptote of the complex singularities as t*→�. Further-
more, we have obtained some numerical results suggesting
that the HFP, responsible for the characteristic behavior of
the system at the real separatrix, may also play a mechanistic
role in the formation of CD singularities. In this section we
explore whether such behavior occurs for more general cases
by numerically investigating two additional one-dimensional
double-well systems. The different asymptotic forms of the
potentials as q→� cause the singular dynamics of these sys-
tems to be very different from each other and from that of the
first system. Nevertheless, the results for the new systems
again indicate that the HFP plays a critical role in the singu-
larity dynamics. By analyzing the common features of the
singular trajectories for the present three systems as well as
for other systems that we have studied, we are led to identify
those properties that cause CD singularities to approach the
separatrix for a class of one-dimensional systems having po-
tential barriers.

A. Second system

We turn our attention to the double-well system defined
by the Hamiltonian of Eq. �1� with the potential

V�q� = cosh q − q2. �47�

This function rises more steeply than that of the quartic sys-
tem for large real values of q. It is easily established that the

components of the force for the present system are given by

Fx = 2x − sinh x cos y , �48�

Fy = 2y − cosh x sin y . �49�

Substituting these expressions in Eqs. �40�–�42� for the case
q  →� yields the conditions

x → � , y → �2k + 1�� �50�

for the divergence channels, where k is any integer. We note
that the number and nature of these channels are very differ-
ent than for the quartic system: instead of only two channels,
coinciding with the positive and negative y axis, the present
system has an infinite number of channels, each asymptoti-
cally parallel to the x axis.

Although we have not investigated the pattern of singu-
larity curves for the present system in great detail, their ar-
rangement in �p0x , p0y� space seems to be more complicated
than that observed for the quartic system, consistent with a
separate set of curves for each of the infinite number of chan-
nels. Figure 9 shows two such curves obtained with the real
initial value for the coordinate q0=0.1. It is seen that both
curves asymptotically approach the value ps

+�0.10 corre-
sponding to the separatrix �E=1� for this case. Examination
of the singularity times indicates that, as for the first system,
they increase along the curve as it approaches ps

+.
Figure 10 reveals that the lower singularity curve of Fig. 9

describes singular trajectories of type rl that diverge in chan-
nel k=0 of Eq. �50� �corresponding to x→�, y→�� while
the upper curve describes singular trajectories of type r that
diverge in channel k=−2 �corresponding to x→−�,
y→−3��. Interestingly, despite the differences between the
divergence channels for the present and quartic double well
systems, entrance to a divergence channel is, still, always
immediately preceded by a critical deflection from the HFP
at q=0.

B. Third system

Finally, we consider the double-well system with Hamil-
tonian given by Eq. �1� and potential energy function

V�q� = e�q2
− �q2, �,� � 0 �51�

which, for large real values of q, increases even more rapidly
than the potential of Eq. �47�. The components of the force in
this case are

Fx = − 2�e��x2−y2��x cos�2�xy� − y sin�2�xy�� + 2�x ,

�52�

Fy = − 2�e��x2−y2��y cos�2�xy� + x sin�2�xy�� + 2�y ,

�53�

and application of Eqs. �40�–�42� shows that divergence
channels for the present system are described by
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x → � , 2�xy → �2k + 1�� , �54�

where k is any integer. These channels correspond to hyper-
bolic branches in the xy plane and are very different from
those for the two previous systems.

Figure 11 shows two singularity curves for this system,
obtained for parameters �=0.2, �=2.0, and with initial co-
ordinate q0=1.2. As in the previous cases, the curves appear
to asymptotically approach the separatrix momentum which
is calculated to be ps

+�2.257. Figure 12 displays trajectories
associated with these curves and shows that the lower and
upper singularity curves describe trajectories of types rl and
r, respectively. This figure also suggests that both trajectories
diverge into channels corresponding to k=0 in Eq. �54�. As
for the previous systems, the trajectories are found to be

deflected by the HFP immediately �less than half a cycle of
motion� before entering a divergence channel, again suggest-
ing that such deflections are involved in the mechanism of
singularity formation.

C. Approach of CD singularities to the separatrix for more
general systems

For each of the three systems examined here, the singu-
larity curves are observed to approach the separatrix as the
singularity time becomes infinite. Although not reported in
this paper, we also have observed similar behavior in a num-
ber of other one-dimensional systems having potential en-
ergy barriers, including those with nonconfining potentials,
such as the Eckart system �V�q�=sech2 q�, and those with
multiple barriers, such as the pendulum �V�q�=−cos q�. In-

FIG. 9. Two singularity curves
for the second system. The dot
marks the separatrix momentum
ps

+.

FIG. 10. Singular trajectories
taken from the singularity curves
in Fig. 9. The solid curve is ob-
tained for p0= �0.3,0.05385�, cor-
responding to a point on the lower
singularity curve, and the dashed
curve is obtained for p0

= �0.3,0.1234�, corresponding to a
point on the upper singularity
curve. The �’s mark turning
points ±q− for the dashed curve.
On the scale shown, they are prac-
tically identical to the ±q− for the
solid curve.
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deed, for these two specific examples, such behavior can be
proven analytically. The cases studied suggest that the ap-
proach of the CD singulatities to the separatrix may be a
general feature for one-dimensional systems with potential
barriers. In this subsection we attempt to explain the com-
mon occurrence of this behavior by identifying the underly-
ing properties of the singular trajectories. This analysis leads
to a clearer understanding of the role of the HFP in the sin-
gularity dynamics.

For simplicity, let us consider an arbitrary one-
dimensional potential V�q� with a single maximum at q=qs,
and let us define Es�V�qs�. Generalization to multiple
maxima is straightforward. If we denote by C the curve in
complex q space formed by a singular trajectory, the singu-
larity time can be expressed as t*=�Cdq / p�q ,E�, as in Eq.
�39�. Plots such as those in Figs. 10 and 12 make it clear that,

as in the quartic double-well case, C can generally be de-
formed to pass from the initial point q0 to the final
asymptotic position, associated with the singularity, via a se-
quence of complex turning points so that the real quantity t*
can be decomposed into a sum of complex times associated
with passage between these points. Although general systems
with barriers may have an unlimited number of complex
turning points, the most important of these for the present
analysis is the pair, denoted by qa and qb, describing colli-
sions with the barrier. These are simply the generalization of
the inner turning points +q− and −q− for the symmetric
double-well systems. For real energies below the barrier
maximum �E�Es�, these points are located on the real q axis
to the right �qs−qa�0� and left �qs−qb�0� of the potential
maximum. For real energies above the barrier maximum
�E�Es�, these points are located in the complex plane at

FIG. 11. Two singularity
curves for the third system. The
dot marks to separatrix momen-
tum ps

+.

FIG. 12. Singular trajectories
corresponding to points on the
singularity curves in Fig. 11. The
solid curve is obtained for p0

= �2.6,0.06055�, corresponding to
a point on the lower curve, and the
dashed curve is obtained for p0

= �2.6,0.12038�, corresponding to
a point on the upper curve. The
dotted curves show the function
y=� / �2�x�, consistent with Eq.
�54� with k=0. The �’s mark
turning points ±q− for the dashed
curve. On the scale shown, they
are practically identical to the ±q−

for the solid curve.
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positions immediately below �i�qs−qa��0� and above �i�qs

−qb��0� the potential maximum, and purely real trajectories
pass through the region between them along the real q axis.
Examination of plots such as those in Figs. 5, 10, and 12, and
similar plots for additional systems �e.g., the Eckart barrier
and the pendulum� now leads to the following key observa-
tion: similar to real trajectories with E�Es, all singular CD
trajectories studied here pass through the region between qa
and qb �i.e., cross a straight line connecting these points� at
least once before becoming singular. As E→Es, qa and qb
approach qs. This constrains a trajectory passing between
these points to cross directly through the HFP so that the
passage time across the barrier becomes infinite. If such a
trajectory is singular, the singularity time tends to infinity.

We now show that a singular CD trajectory, passing at
least once through the region between qa and qb with
E−Es sufficiently small, is indeed part of a continuous fam-
ily of trajectories that remain singular as E→Es. In other
words, such a trajectory lies on a singularity curve that ap-
proaches the separatrix energy as t*→�. To establish this, let
us isolate a portion of the curve C that crosses a straight line
connecting qa and qb. We deform such a segment of C to a
straight line extending along the real q-axis between points
q1 and q2, where q1�qs and q2�qs are real, energy-
independent constants with values that need not be precisely
specified. Denoting the complex time along this segment by

T�E� = 	
q1

q2

dq/p�q,E� , �55�

the singularity time can be expressed in the general form

t*�E� = mT�E� + tc�E� �56�

where m=1,2 ,3 , . . . , is the number of times the deformed
trajectory crosses the barrier maximum at q=qs �i.e., the
number of times the original trajectory crosses the line con-
necting qa and qb� and tc is the complex time for motion
along the remaining portions of the deformed trajectory
�which exclude the interval �q2 ,q1��. In Figs. 10 and 12,
m=1 for the dashed curves and m=2 for the solid curves. As
before, the condition Im t*�E�=0 identifies energies E of CD
singular trajectories and, thus, determines singularity curves.

To proceed, we need to estimate T�E� for energies near
Es. We thus linearize the equations of motion for q�qs,
replacing the exact Hamiltonian with the approximation
H= p2 /2−�2�q−qs�2 /2+Es, where �= �−d2V�qs� /dqs

2�1/2. If
the trajectory begins at point q1 near qs with a complex mo-
mentum p1, the complex time required for the system to
reach the point qs is found to be

t1s � 	
q1

qs dq

p�q,E�
=

1

�
tanh−1�−

�q1

p1
� . �57�

Expressing p1 in terms of E and q1, applying the logarithmic
form of the function tanh−1�z�, and expanding to lowest order
about E=Es, yields the approximation

t1s � − �2��−1ln��E − Es�/E0� , �58�

where E0=2�2q1
2. Although this result is based on the as-

sumption that qs−q1 is small, so that V�q1� is approximately
quadratic, it can be extended to more general values of q1 by
an appropriate redefinition of the constant E0. Replacing
�q1 , p1� with �q2 , p2�, we may apply the same treatment to the
passage time ts2 between qs and q2. This yields the approxi-
mation

T�E� = t1s + ts2 � − �−1ln��E − Es�/E0� , �59�

where E0 is a certain real constant whose precise value is not
important here. The crucial point is that T diverges logarith-
mically as E→Es. In contrast, the quantity tc varies slowly
near E=Es since it describes times for motion along portions
of the trajectory that do not pass near the HFP.

We now substitute Eq. �59� into Eq. �56�. Treating
tc= tcr+ itci as approximately constant near E=Es, we may
solve for E in terms of t*, to obtain

E − Es = E0e−��t*−tcr�/me−i�tci/m. �60�

This equation provides an explicit formula for the energies of
CD singularities as a function of the �real� singularity time t*
and establishes that these energies tend to Es as t*→�. As in
the case of Eq. �26�, Eq. �60� implies that the singularity
curves in the complex p0-plane approach the separatrix mo-
mentum at specific angles �=−�tci /m. We note that the
quantities tci and m appearing here depend on which turning
points are encompassed by the singular trajectories and how
many times they are encompassed. As in the quartic double
well case, the correspondence of specific sequences of turn-
ing points to specific singularity curves results in the forma-
tion of singularity curve hierarchies for more general double-
well systems.

V. SUMMARY AND DISCUSSION

We have examined singularities occurring in classical dy-
namics for finite real times and complex initial conditions for
a number of one-dimensional double-well systems. Our prin-
cipal objective has been to determine how such singularities
influence the ordinary real motion. We began by examining
the analytical expressions for the dynamics of the quartic
double well system. In that case, we were able to show that
the motion becomes singular for a doubly infinite sequence
of complex initial conditions, associated with pairs of inte-
gers �m ,n�. These conditions form three-dimensional sur-
faces in the four-dimensional phase space. For fixed initial
coordinate q0, such surfaces reduce to a dense set of one-
dimensional singularity curves in �p0x , p0y� space. These
curves are parametrized by the singularity time t* and con-
verge to specific points ps

± as t*→�, corresponding to initial
momenta for the separatrix. The direction of approach of the
curves to ps

± depends on �m ,n�.
Although this confluence of singularities should imply a

relationship between the dynamics of complex singular mo-
tion and that of the real motion at the separatrix, the nature of
this relationship is somewhat subtle. The separatrix motion,
which is actually nonsingular for all finite real times, be-
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comes singular in the double limit limE→0limt→tE
, where tE,

the time for being in a particular left or right well at energy
E, becomes infinite when E approaches the separatrix energy
0. However, the singularity produced, a pole in �q /�E, is of
a different kind than the CD singularities and, unlike the CD
singularities, is not associated with divergence of the trajec-
tory. Nevertheless, our analysis shows that the two forms of
singularities are interrelated: the relatively weak singularity,
characteristic of the real separatrix motion, is what remains
of the merging CD singularities when their divergent behav-
ior is removed �e.g, by the factor Em in Eq. �36��. Thus,
although the dynamics at the real separatrix is not identical
to the dynamics of singular complex motion, the unstable
behavior that characterizes the separatrix can be said to origi-
nate from the CD singularities. We mention that it is not
difficult to carry out a similar analysis for the singularites of
the Eckart system and show that it leads to analogous con-
clusions.

Several aspects of the analytical results for the quartic
oscillator system were verified numerically. Calculations in-
deed suggest that an infinite number of singularity curves
exist and that they approach the initial conditions defining
the real separatrix from a variety of directions as t* becomes
large. Each of these singularity curves is found to be associ-
ated with trajectories of a particular topology, executing a
specific number of cycles in the right and left wells before
becoming divergent. This allows one to identify each curve
by means of a dynamical code that is shown to be related to
the integers �m ,n� which identify the singularities in the ana-
lytical treatment. The observed ordering of the curves in the
complex p0 plane and their directions of approach to the
separatrix can be understood on the basis of the analytical
treatment.

The numerical results for this system reveal further appar-
ent relationships between real separatrix dynamics and CD
singularities. Like the separatrix, a singularity curve divides
phase space into regions of initial conditions that yield quali-
tatively different long-time dynamics. Additionally, the HFP,
responsible for the instability of the real separatrix, also ap-
pears to play a critical mechanistic role in the formation of
the CD singularities by deflecting trajectories towards diver-
gence channels.

Many of the singularity phenomena described above were
also observed in the numerical treatments of two additional
double-well systems. In those cases, too, there appeared to be
a large number of singularity curves that converge, as
t*→�, to the point ps

+ on the p0 plane corresponding to the
separatrix. These curves also divide the phase space of initial
conditions into regions of different dynamics. Although the
divergence channels differ greatly for the various systems,
entrance into such channels always appears to require a de-
flection of the trajectory from the HFP.

The apparent generality of the convergence of CD singu-
larities to the separatrix can be traced to a key property of the
singular trajectories observed for all systems studied: the
passage of these trajectories through the region between a
specific pair of complex turning points, associated with bar-
rier collisions. Our analysis establishes that, if a singularity
curve associated with such a trajectory passes sufficiently
close to the separaratrix, it will actually approach the sepa-

ratrix as the singularity time becomes infinite. Here, “suffi-
ciently close” means that the turning points for the barrier
collisions lie on the portion of the potential energy function
that is effectively quadratic. Our treatment directly relies on
the existence of the HFP which slows the motion of trajec-
tories in its vicinity, causing the singularity time to diverge,
and the singularity energy to approach the real separatrix
value.

There is an additional, rather different, argument that ties
the delay of the trajectories near the HFP to the approach of
CD singularities to the separatrix. It can be proven that, if the
potential energy function V�q� is analytic in a strip near the
real q axis and has barrier maxima for real q, then the sin-
gularity curves �for finite-code singularities� can approach
the real axis only at separatrices and only as t*→�. To see
this, we note that, for precisely real initial conditions, the
trajectory remains real for all t. The analyticity of the poten-
tial energy function implies that the dynamics is a continuous
function of the initial conditions. Therefore, as the initial
conditions approach real values, the trajectory remains
nearly real for times approaching infinity �46�. Since singular
behavior requires the trajectory to move away from the real q
axis, such divergences for initial conditions arbitrarily close
to the real axis can arise only as t*→�. Now consider com-
plex initial conditions that tend to real values at energies that
do not coincide with those for the separatrix. Since the pe-
riod of the real motion away from the separatrix is finite, the
requirement t*→� means that such complex initial condi-
tions can produce singularities only if the trajectories survive
for an infinite number of periods before diverging, i.e., only
if they have codes of infinite length �e.g., r� or �rl���. It is
only for initial conditions near the separatrix, where the
period of real motion becomes infinite, that the complex
motion can become divergent after a finite number of peri-
ods. Thus, initial conditions for CD singularities, associated
with finite-length codes, can become real, and the corre-
sponding singularity curves can approach the real axis, only
at a separatrix.

As emphasized in Sec. I, complex dynamics is a direct
generalization of ordinary, real, classical mechanics and is,
thus, a very natural subject for investigation. The present
studies were prompted by a surprising lack of previous at-
tention to a conspicuous feature that characterizes these dy-
namics, namely, the occurrence of singularities and near sin-
gularities at finite real times. Since such phenomena occur
even in very simple, one-dimensional, autonomous, systems
having nonsingular real motion, the present work was re-
stricted to cases of this kind. However, it would be of greater
interest to investigate CD singularities in one-dimensional
systems that are made nonintegrable by the addition of a
time-dependent perturbation. Indeed, as mentioned earlier,
there is reason to expect a link, in such systems, between an
approach of CD singularities to the real axis and the forma-
tion of chaos. We intend to investigate this issue in a subse-
quent paper which will also demonstrate that many features
of the CD singularity behavior found here are shared by such
nonintegrable systems. Observed differences in the CD sin-
gularity behavior for the two kinds of systems are directly
related to specific differences in their real dynamics that arise
from their integrable or nonintegrable nature.
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APPENDIX: PROPERTIES OF THE COMPLEX PASSAGE
TIMES

We wish to establish the properties described in Sec. II for
the variables 
 ,� ,� ,, and �i, defined in Eqs. �16�–�18�. Let
us denote the quantity �1+E�1/2 by z so that q±

2 =1±z and
k2=2z / �1+z� �see Eqs. �4�, �5��. For the complex momentum
range p0x�0, p0y 	0, it is easily verified that Re z�0,
Im z	0, Re k2�1, and Im k2	0. For such values of k2, a
treatment analogous to that of Ref. �42� shows that
K− iK�can be expressed in the form

K − iK� = 	
0

1

�k2 − u2�−1/2�1 − u2�−1/2du , �A1�

showing that this function becomes real as Im k→0. Apply-
ing this expression, we can write Eq. �16� as

�2�
 − i�� = 	
0

1

�2z − u2 − zu2�−1/2�1 − u2�−1/2du . �A2�

Since, for all 0�u�1, the real part and imaginary parts of
�2z−u2−zu2�−1/2 are �0 and �0, respectively, it follows that

�0 and �	0.

In a similar way, the representation

K� = 	
0

1

�1 − u2 + k2u2�−1/2�1 − u2�−1/2du �A3�

�equivalent to that of Eq. �12�� allows Eq. �17� to be ex-
pressed as

�2�� − i� = 	
0

1

��1 + z��1 − u2� + 2zu2�−1/2�1 − u2�−1/2du .

�A4�

Since, for all u in the integration range, the real part and
imaginary parts of ��1+z��1−u2�+2zu2�−1/2 are �0 and �0,
respectively, we see that ��0, 	0.

To establish that � /��1, we examine the function

q+
−1K = q+

−1	
0

1

�1 − k2u2�−1/2�1 − u2�−1/2du �A5�

=	
0

1

�1 + z − 2zu2�1/2�1 − u2�−1/2du . �A6�

Substituting v=1−2u2 for 0�u�2−1/2 and v=2u2−1 for
2−1/2�u�1, we obtain

q+
−1K =

1

2
	

0

1 1

�1 − v2�1/2� 1

�1 + zv�1/2 +
1

�1 − zv�1/2�dv .

�A7�

Denoting 1+zv by r1exp�i�1� and 1−zv by r2exp�i�2�, we
have

Im� 1

�1 + zv�1/2 +
1

�1 − zv�1/2�
= − r1

−1/2sin��1/2� − r2
−1/2sin��2/2� . �A8�

We observe that r1�r2, and � /4	�1 /2	0	�2 /2	−� /2.
Additionally, since sin �1= �Im z�u /r1 and sin �2=
−�Im z�u /r2, we have sin �2  �sin �1 which, for the above
range of �1 and �2, implies that sin��2 /2�  �sin��1 /2�. As
a result, the quantity in Eq. �A8� is positive for all v in the
integration range, establishing that

Im q+
−1K � 0. �A9�

Expressing Im q+
−1K=Im �q+

−1�K− iK��+q+
−1iK��=�2�−�+��,

we see that the above result implies ��� or, equivalently,
� /��1, as claimed.

To examine the asymptotic behavior of � /� as p0y→�,
we note the representations

�2�
 − i�� =
1

2
	

0

1 dw

�w�1 − w2��z − w��1/2 �A10�

and

�2�� − i� =
1

2
	

0

1 dw

�w�1 − w2��z + w��1/2 �A11�

which can be obtained by substituting w=u2 / �2−u2� in Eq.
�A2� and w= �1−u2� / �1+u2� in Eq. �A4�. As p0y→�,
z→2−1/2exp�i� /2�p0y so that �z±w�−1/2→21/4exp�
−i� /4� / p0y

1/2. Thus, taking the imaginary part of Eq. �A10�
and the real part of Eq. �A11� we find that � and � approach
the same limiting value

2−7/4p0y
−1/2	

0

1

dw�w�1 − w2��−1/2,

thus proving that � /�→1 as p0y→�.
Finally, we wish to establish bounds for the quantity �i

=Im � for real values of the initial position q0. To obtain an
upper bound, we express � �the complex time required for
the particle to go from q0 to the turning point q+� as

� = J − T , �A12�

where

J = 	
q0

�

dq�2�E − q4 + 2q2��−1/2 �A13�

is the time required to travel from q0 to � and

T = 	
q+

�

dq�2�E − q4 + 2q2��−1/2 �A14�

is the time required to travel from q+ to �. The integration
paths for J and T can be chosen as straight lines—there are
no intermediate singularities that need to be avoided. The
substitution u=q+ /q allows us to express T as
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T = −
i

�2q+
	

0

1 du

�1 − �q−/q+�2u2�1/2�1 − u2�1/2 �A15�

=− i�2q+
2�−1/2K� �A16�

=− i� −  , �A17�

where we have used Eqs. �A3� and �17�. Taking the imagi-
nary part of both sides of Eq. �A12� now gives �i=Im J+�.
However, since the integration path for J can be chosen to be
the real axis, Eq. �A13� shows that Im J�0. Consequently,
the equation for �i implies that �i��, thus establishing the
desired upper bound for �i.

To obtain a lower bound for �i, we express � in the form

� = S − I , �A18�

where

S = 	
0

q+

dq�2�E − q4 + 2q2��−1/2 �A19�

and

I = 	
0

q0

dq�2�E − q4 + 2q2��−1/2 �A20�

are times for passage between 0 and q+ and between 0 and
q0, respectively. Again, we can choose the integration paths
in these definitions as straight lines. However, the substitu-
tion u= �1−q2 /q+

2�1/2 converts the integral in Eq. �A19� to the
form of Eq. �A1�, thus showing S to be identical to 
− i�. As
a result, the imaginary part of Eq. �A18� can be expressed as
�i=−�−Im I. However, since the integration contour for I
can be chosen to be the real axis, Eq. �A20� shows that
Im I�0, thus establishing the inequality �i	−� which pro-
vides a lower bound for �i.
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